Андрей Анатольевич Мельниченко: изобретения

Трансгенератор

Андрей Анатольевич Мельниченко, физик и изобретатель, уже демонстрировал в редакции «Техники — молодёжи» свой экспериментальный генератор (см. ТМ № 6 / 2007 «Трансгенерация магнитным полем: две лампочки горят по цене одной», ТМ № 9 / 2012 «Фантастический магнетизм, открытый... Фарадеем»). В этих экспериментах к первичному источнику подключалась одна лампочка, а через устройство, названное автором «Трансгенератор магнитного поля» вторая. Обе лампочки светились в почти полный накал, при этом расход электроэнергии был таким, как если бы в цепи была только одна лампочка. Объяснения автора типа, что дополнительная энергия извлекается из ферритового сердечника «благодаря тому, что ферромагнетик образован спиновыми квантовыми токами», сотрудников редакции не удовлетворили. Но против фактов (подкреплённых показаниями приборов) не попрёшь — вторая лампочка тоже светилась. Причём, полноценно и... бесплатно!

Публикуем новую статью о трансгенераторе Андрея Мельниченко в надежде, что читатели ТМ сумеют разъяснить происходящее в эксперименте.

Материал предоставлен для публикации на нашем сайте apxu.ru автором. Контакты с автором смотрите ниже, в конце статьи.

В этой статье продолжим рассказ о принципиально новом и важном способе генерации энергии на основе принципа разделения магнитных полей. Важность этого открытия для нашей цивилизации невозможно переоценить. Ведь, используя магнитные свойства такого обычного «железа», как трансформаторная или электротехническая сталь, ферриты и т.п., можно получать абсолютно бесплатную неограниченную электроэнергию в любом месте и в любом количестве. Вся архаичная тепловая, паровая, гидроэнергетика, атомная и вся обычная и альтернативная электроэнергетика становятся абсолютно не нужны, а гигантское оборудование для её выработки превращается просто в металлолом и утиль.

Частично принципы генерации энергии магнитным полем описал более полутора веков назад ещё Майкл Фарадей… А значит, мы просто тупо потеряли сто лет совершенно другой энергетики, безопасной, абсолютно бесплатной и неограниченной. Такова наша общая плата за невежество и догматизм в физике, а главное, за недостаточно глубокое понимание особенностей и специфических аспектов магнетизма и ферромагнетизма...

Физика важных, принципиально новых для электротехники технических возможностей применения эффекта генерации энергии в системах с разделением магнитных полей ферромагнетиков описана в моих более ранних статьях. Напомним основные особенности магнитных систем в электротехнике и преобразовательной технике.

В обычных трансформаторах и дросселях всё магнитное поле системы индуктивно связано с обмотками и токами, а сами магнитные материалы сердечников рассматриваются просто лишь как некая магнитная среда с какой-то определённой магнитной проницаемостью (техническая мю). Однако ферромагнетик является при этом и сам носителем магнитной энергии, и само магнитное поле ферромагнетика может быть не всегда связано с обмоткой намагничивания.

Возьмём простой пример из намагничивающего сердечника с обмоткой в роли индуктора и расположенного рядом (через зазор) другого сердечника. Назовём его вторичным сердечником. Если зазор достаточно велик, то вокруг этого намагниченного вторичного сердечника образуется уже и собственное магнитное поле, которое вообще уже никак пространственно и магнитно не
связано с индуктором. Вторичный сердечник как ферромагнетик является при этом уже сам носителем магнитной энергии. И эта магнитная энергия вторичного поля связана только с ферромагнетиком, а не с токами в проводах. В данном случае принципиально технически важно то, что все затраты электроэнергии на намагничивание связаны только с тем магнитным полем, которое непосредственно и прямо индуктивно связано с обмоткой намагничивания. Как говорят в электротехнике, образует с ней так называемое магнитное потокосцепление. А вторичного магнитного поля, замкнутого только вокруг вторичного сердечника, как бы вообще нет для источника тока.

Однако это вторичное магнитное поле второго сердечника из ферромагнетика вполне реально и обладает некоей магнитной энергией, которую можно преобразовать в электроэнергию. Конечно, между сердечниками всегда есть и общее магнитное поле, и второй сердечник тоже обратно подмагничивает сердечник индуктора, и сердечники магнитно взаимодействуют через зазоры. Но важно то, что вторичное магнитное поле само вообще никак не участвует в магнитном взаимодействии сердечников, и его просто как бы не существует для источника намагничивания. И образуется вторичное магнитное поле без каких-либо затрат источника электроэнергии, питающего обмотку индуктора.

Эту вторичную магнитную энергию можно легко преобразовать в дополнительную электроэнергию, просто введя специальную съёмную обмотку на вторичный сердечник. Само устройство поразительно просто, это несколько сердечников из ферромагнетика с обмотками, разделённые относительно небольшими зазорами из диэлектрика.

Конфигурация, форма сердечников и всей магнитной системы и полей может быть весьма разнообразной.

Важно отметить, что в теории электротехники и в теории магнитных цепей вообще, даже гипотетически, никогда не рассматривался случай магнитных систем, где могут быть магнитные поля «железа», уже не связанные с обмотками. В задачках по затратам энергии и работы источника тока на намагничивание обычно рассматривается только самый простой случай сердечника из ферромагнетика в виде замкнутого тора. В любом случае, независимо от формы магнитной цепи, подразумевается только конструкция, когда всё магнитное поле ферромагнетика априори индуктивно связано с обмоткой намагничивания. Поэтому столь простая до гениальности идея с отделением магнитных полей сердечников от проводов с током оказалась абсолютно неожиданной с точки зрения классической теории электротехники.

Профессора с кафедры ТОЭ просто сразу разводили руками, так как нет таких сложных интегралов в теории, чтобы как-то учесть всю магнитную энергию системы, имеющей вид,например, множества кусков железа, раскиданных вокруг мощного электромагнита. Как посчитать все эти сложные магнитные поля всех железяк, теория не знает, и нет такого математического аппарата, в принципе. Да и сам источник тока затрачивает работу на преодоление ЭДС только от того магнитного потока, что проходит непосредственно через витки катушки, и это потолок затрат. И других магнитных полей для него просто не существует!

А ведь величина энергии вторичного магнитного поля сильно зависит от зазоров и самой формы сердечника, особенно от формы его сечения, так как вторичное магнитное поле рассеивания связано с поверхностным внешним слоем сердечника и краевыми эффектами. Также важны магнитные свойства материала сердечника, такие как кривая намагничивания ферромагнетика, степень намагниченности сердечника индуктора и величина зазоров. С ростом магнитной индукции сердечника индуктора также растёт и величина индукции вторичного сердечника. Сама структура магнитного поля тоже немного меняется с ростом магнитной индукции материала, так как домены стремятся развернуться в стороны от параллельного положения из-за взаимного магнитного момента.


В ферритах магнитная индукция не более 0,4–0,5 Тл, а в электротехнической стали магнитная индукция достигает 1,5–2 Тл и более, что в четыре-пять раз больше, чем у ферритов. Это значит, что на электротехнической стали и особенно на её специальных сортах можно сделать гораздо более эффективную генерацию, чем на ферритах.

Дополнительная энергия может сниматься с множества вторичных сердечников. Это могут быть как и миниатюрный импульсный обратноходовой преобразователь на феррите, так целая электростанция на электротехнической стали. Количество сердечников и их форма могут быть различными, как и схемы соединения обмоток с нагрузкой. Обмотки разных сердечников могут параллельно работать и на общий ёмкостной (диодно-конденсаторный) сумматор напряжения, а также заряжать вообще разные аккумуляторные батареи. При этом энергия с одного накопителя в виде АКБ или блока конденсаторов идёт через преобразователь в другой накопитель, питая при этом ещё и полезную нагрузку. Преобразование электроэнергии от режима импульсного преобра-
зователя обратного хода в переменный ток (синусоидальный) в электростанциях для генерации большой мощности в общую или локальную сети также не представляет проблемы. Импульсное
устройство или пара устройств работает в режиме автогенератора, как своего рода тяни-толкай, просто раскачивая (подкачивая мощность) колебательный резонансный контур из трансформаторов и конденсаторов, а уже с LC-контура можно снимать переменный ток промышленной или другой частоты. Такой тип резонансного преобразователя импульсов постоянного тока в переменный гораздо проще, дешевле и эффективнее инверторов переменного тока. Новое поколение мощных и быстрых запираемых тиристоров позволяет легко коммутировать, не хуже транзисторов, мощности в десятки мегаватт, и это не предел. Это значит, что обратноходовой преобразователь можно легко сделать и на электротехнической или трансформаторной стали на большие мощности — в несколько мегаватт и более. Предела мощности в данном случае технически нет никакого вообще, так как устройства могут работать и параллельно, а пиковая мощность ключей для коммутации тока уже давно исчисляется почти гигаваттами. К примеру, даже простые механические щёточные коллекторы в электромоторах постоянного тока легко коммутируют десятки мегаватт с минимальными потерями.

Преобразование самой импульсной мощности в переменный ток синусоидальной формы легко сделать технически, просто используя толчки импульсной мощности для раскачки колебаний тока и напряжения в резонансных контурах из катушек и конденсаторов. С таких контуров или их каскадов уже можно снимать почти идеальный синусоидальный ток любого нужного напряжения.

Вторичное магнитное поле можно использовать в различных режимах работы как в статических устройствах, так и в электрических машинах вращения типа синхронного или индукторного генератора, но с эффектом разделения магнитных полей индуктора (или ротора индуктора) и статора. Вторичное магнитное поле стали статора не тормозит ротор-индуктор, но при этом даёт электроэнергию (об этом было в прошлых статьях). Но технически преобразование магнитной энергии вторичного поля наиболее удобно производить в статических устройствах (в цикле намагничивание — размагничивание) при фазе размагничивания в режиме так называемого обратного хода. Эксперименты, кстати, отлично подтверждают такую фантастическую для обычной электротехники возможность. Опыт чётко и ясно показывает, что энергия вторичного магнитного поля, снимаемая с одного или нескольких вторичных сердечников, даёт существенную прибавку к электроэнергии, получаемой от источника тока. А реальный КПД такого особого обратноодового преобразователя получается больше 100%, причём значительно, даже при существенной величине потерь.


Используя наборные ферритовые системы сердечников с зазорами нужной величины, можно создавать специальные обратноходовые преобразователи на ферритах или на электротехнической, трансформаторной стали с КПД значительно более 100%. Технически это могут быть относительно простые и компактные устройства. Устройство будет состоять, как и обычный преобразователь, из тех же ферритовых сердечников, ключей транзисторов и микросхем управления плюс ещё ряд обычных для таких плат деталей.

Простейший вариант устройства для системы бесперебойного питания — это два или три аккумулятора или блока конденсаторов и преобразователь-усилитель между ними. По сути, это перезарядка батарей и питание нагрузки в придачу. Карманный блок бесперебойного питания типа самозарядки (автозарядки) для гаджетов любого типа, игрушек, радиоприёмников и прочих устройств любой мощности вплоть до блоков бесперебойного питания для промышленных и бытовых систем, включая системы связи и системы безопасности.


Устройство можно использовать и в виде простого усилителя мощности для нагрева воды. К примеру: взяли один киловатт из сети, а получили два для нагрева воды в электронагревательном котле. Заплатили за 1 кВт, а нагрели воду в котле на 2 кВт, что уже экономически просто сверхвыгодно. В этом случае для нагрева воды не важна ни частота, ни форма тока и не нужна сложная специальная схема для автономного питания. Хотя если у нас из 2 кВт получаются, например, 3 кВт, то можно вообще почти убрать потребление энергии из сети за счёт специальной электросхемы отсечки. Любое такое самое простое устройство даже при приличной цене очень быстро окупается за счёт цены на электроэнергию.

Потенциальный рынок для таких устройств просто огромен, и это многие триллионы долларов. Скажете фантастика, но опыт — вещь упрямая и он полностью подтверждает такую воз-можность.

Предложение для инвесторов

Инвестор получает права на участие в одном или нескольких совместных производствах (с моим долевым участием) в любом регионе (стране), удобном инвестору. Я как Изобретатель обеспечиваю полное инженерно-техническое авторское сопровождение данного проекта всеми новыми разработками и ноу-хау по мере их опытного промышленного проектирования, освоения и внедрения, а также защиту интеллектуальной собственности и патентование устройств, полезных моделей и промышленных образцов.

Уже разработаны десятки вариантов способа генерации, более сотни устройств и десятки схемотехнических решений для создания генераторов любого уровня мощности. Инвестор абсолютно финансово защищён тем, что как производитель сам непосредственно получает всю выручку и прибыль напрямую от покупателей устройств и имеет приоритетный доступ к новым разработкам, а я как автор изобретения и соучредитель заинтересован в успехе данного производства и в его технологическом конкурентном развитии. Как автор изобретения я буду иметь доступ и совместные права по сублицензированию и перекрёстному патентованию ко всем близким техническим решениям других разработчиков.

Мельниченко Андрей Анатольевич. Физик изобретатель.
Тел. +7 910 430 83 48
melnichenko1968@gmail.com

  • Очень надеемся, что такие изобретения будут внедряться в нашу жизнь!

    admin