• Магическая ВОСЬМЁРКА

    Число 8 считается в Китае самым благоприятным.

    Если восьмерку перевернуть - получится знак бесконечности.

    Без цифр невозможно понять историю. Трудно представить, как описать словами время. То, что и так представляется, благодаря образам, с большим трудом. Что нельзя рассматривать как нечто целое, не объединив его, создав количественные характеристики. А это не что иное, как числа. Куда не направь свой взор - всюду цифры, цифры...

  • Методы решения иррациональных уравнений

    Методы решения иррациональных уравнений, как правило основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному, ли-бо является его следствием. Поэтому существуют два пути при решении иррациональных уравнений:

    1) переход к выводным уравнениям (следствиям) с последующей проверкой корней;

    2) переход к равносильным системам.

  • Математическое доказательство существования Бога

    Вероятность существования Бога равна 62 %. К такому выводу на основе математических вычислений пришли немецкие ученые.

    В исследовании была применена формула священника и математика Томаса Байеса двухсотлетней давности. Были проведены исследования и сделаны расчеты в нескольких направлениях. Среди них – возникновение и устройство космоса, эволюция, добро и зло, религиозные сведения – на многие трудные вопросы должен был быть найден математический ответ.

  • Историческая справка об иррациональных уравнениях

    “Источником алгебраических иррацио-нальностей является двузначность или мно-гозначность задачи; ибо было бы невозмож-но выразить одним и тем же вычислением многие значения, удовлетворяющие одной и той же задаче, иначе, чем при помощи кор-ней…; они же разве только в частных случа-ях могут быть сведены к рациональностям”. (Лейбниц Г.)

  • Элементы математического анализа

    Элементы математического анализа занимает значительное место в школьном курсе математики. Учащиеся овладевают математическим аппаратом, который может быть эффективно использован при решении многих задач математики, физики, техники. Язык производной и интеграла позволяет строго формулировать многие законы природы. В курсе математики с помощью дифференциального и интегрального исчислений исследуются свойства функций, строятся их графики, решаются задачи на наибольшее и наименьшее значения, вычисляются площади и объемы геометрических фигур.

  • Функциональный метод

    Не всякое уравнение вида f(x)=g(x) в результате преобразований может быть приведено к уравнению того или иного стандартного вида, для которого подходят обычные методы решения. В таких случаях имеет смысл использовать такие свойства функций f(x) и g(x) как монотонность, ограниченность, четность, периодичность и др. Так, если одна из функций возрастает, а другая убывает на определенном промежутке, то уравнение f(x) = g(x) не может иметь более одного корня, который, в принципе, можно найти подбором. Далее, если функция f(x) ограничена сверху, а функция g(x) – снизу так, что f(x)мах=А g(x)мin=A, то уравнение f(x)=g(x) равносильно системе уравнений.

  • Графический метод решения уравнений

    На практике для построения графика некоторых функций составляют таблицу значений функции для некоторых значений аргумента, затем наносят соответствующие точки на координатную плоскость и последовательно соединяют их линией. При этом предполагается, что точки достаточно точно показывают ход изменения функции.

  • История развития комплексных чисел

    Введение комплексных чисел было связано с открытием решения кубического уравнения, т. е. ещё в 16 веке.

    И до этого открытия при решении квадратного уравнения x2 + + = px приходилось сталкиваться со случаем, когда требовалось извлечь квадратный корень из (p/2) 2 - q, где величина (p/2) 2 была меньше, чем q. Но в таком случае заключали, что уравнение не имеет решений. О введении новых (комплексных) чисел в это время (когда даже отрицательные числа считались «ложными») не могло быть и мысли. Но при решении кубического уравнения по правилу Тартальи оказалось, что без действий над мнимыми числами нельзя получить действительный корень. 

  • Китайская математика

    В китайской науке было получено много замечательных результатов. В области математики - десятичные дроби и пустая позиция для обозначения нуля; то, что в Европе с XVII в. называли «треугольник Паскаля», в Китае к началу XIV в. считался старинным способом решения уравнений; то, что известно как подвес Кардана (XIV в.), в действительности должно быть названо подвесом Дин Хуаня (II в.). В Китае при династии Тан (VII-Х вв.) были изобретены механические часы. Развитие шелкоткачества обусловило такие фундаментальные изобретения, как приводной ремень и цепная передача.

  • Компьютерное искусство

    Искусство предполагает общение между художником и зрителями. В идеальном случае — это замкнутый цикл: художник представляет зрителям свою работу, вызывает их реакцию и использует ее как обратную связь, учитывая, с целью быть лучше понятым, отклик зрителей в своей дальнейшей работе.

    Есть ли препятствия распространению компьютерной графики и компьютерного искусства? Пока это были лишь рисунки, созданные графопостроителем, главной проблемой были сомнения специалистов, историков искусства, искусствоведов и, более всего, владельцев галерей.

  • Наглядность

    Компьютер — это устройство для обработки данных, а термин «данные» (информация), казалось бы, означает числа, а не рисунки. Однако рисунки — это в сущности другой способ описать реальные события — факты.

    Кроме того, рисунки можно закодировать числами, а затем обработать с помощью компьютера. Графические изображения, созданные компьютером, будем далее называть для краткости компьютерной графикой. Значение этого (когда-то побочного) способа использования компьютеров чрезвычайно возросло в последнее время. 

  • Проникновение в хаос

    Рассмотрим пример. Рост некоторой популяции за несколько лет обычно описывают при помощи коэффициента прироста, т. е. отношения ежегодного прироста численности популяции к ее общей численности. Если эта величина остается постоянной в течение всего периода времени, то говорят, что закон роста является линейным, а сам рост называют экспоненциальным. Например, при коэффициенте прироста в 5 % популяция удваивает свою численность каждые 14 лет. Законы такого типа, однако, применимы только на ограниченных промежутках времени. Для роста всегда существуют пределы. 

  • Образное мышление

    Рассматриваемые здесь процессы возникают в различных физических и математических задачах. Все они имеют одно обшее — это конкуренцию нескольких центров за доминирование на плоскости. Простые границы между территориями в результате такого соперничества возникают редко. Чаше имеет место нескончаемое филигранное переплетение и непрекращающаяся борьба даже за самые малые участки. 

  • Бессилие прямой

    Хотелось бы привести слова Фриденсрайха Хундертвассера, одного из тех замечательных людей силами которых современная наука становится все ближе к искусству, а искусство получает возможность использовать весь арсенал средств, предоставляемых сегодняшней наукой для выражения идей и художественных замыслов:

    В 1953 году я понял, что прямая линия ведет человечество к упадку. Тирания прямой стала абсолютной. Прямая линия — это нечто трусливое, прочерченное по линейке, без эмоций и размышлений; это линия, не существующая в природе. И на этом насквозь прогнившем фундаменте построена наша обреченная цивилизация. Если даже и возникает где-то мысль, что прямая линия напрямик ведет к гибели, ее курсу все равно продолжают следовать дальше… Любой дизайн, основанный на прямой линии, будет мертворожденным.

  • Философия математики Аристотеля

    К. Маркс назвал Аристотеля (384-322 гг. до н. э.) «величайшим философом древности». Основные вопросы философии, логики, психологии, естествознания, техники, политики, этики и эстетики, поставленные в науке Древней Греции, получили у Аристотеля полное и всестороннее освещение. В математике он, по-видимому, не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков. 

    Комментарии: 1
  • Платон и его идеализм

    Сочинения Платона (427-347 гг. до н. э.) — уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сомнениями и неуверенностью, подчас с безрезультатными попытками разрешения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т. п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.

    Комментарии: 1
  • Демокрит

    Аргументы Зенона вскрыли внутренние противоречия, которые имели место в сложившихся математических теориях. Тем самым факт существования математики был поставлен под сомнение. Какими же путями разрешались противоречия, выявленные Зеноном?

    Простейшим выходом из создавшегося положения бал отказ от абстракций в пользу того, что можно непосредственно проверить с помощью ощущений. Такую позицию занял софист Протагор. Он считал, что «мы не можем представить себе ничего прямого или круглого в том смысле, как представляет эти термины геометрия; в самом деле, круг касается прямой не в одной точке».

  • Элейская школа

    Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI — V в. до н. э.) и Зенона (первая половина V в. до н. э.).

    Философия Парменида заключается в следующем: всевозможные системы миропонимания базируются на одной из трех посылок: 1) Есть только бытие, небытия нет; 2) Существует не только бытие, но и небытие; 3) Бытие и небытие тождественны. Истинной Парменид признает только первую посылку. Согласно ему, бытие едино, неделимо, неизменяемо, вневременно, закончено в себе, только оно истинно сущее; множественность, изменчивость, прерывность, текучесть — все это удел мнимого. 

  • Пифагорейская школа

    На основании данного выше исследования милетской школы можно лишь убедиться в активном влиянии мировоззрения на процесс математического познания только при радикальном изменении социально-экономических условий жизни общества. Однако остаются открытыми вопросы о том, влияет ли изменение философской основы жизни общества на развитие математики, зависит ли математическое познание от изменения идеологической направленности мировоззрения, имеет ли место обратное воздействие математических знаний на философские идеи. Можно попытаться ответить на поставленные вопросы, обратившись к деятельности пифагорейской школы.

  • Милетская школа

    Милетская школа — одна из первых древнегреческих математических школ, оказавшая существенное влияние на развитие философских представлений того времени. Она существовала в Ионии в конце V — IV вв. до н. э.; основными деятелями ее являлись Фалес (ок. 624—547 гг. до н. э.), Анаксимандр (ок. 610-546 гг. до н. э.) и Анаксимен (ок. 585-525 гг. до н. э.). Рассмотрим на примере милетской школы основные отличия греческой науки от догреческой и проанализируем их.