• Лагранж

    Лагранж (Lagrange) Жозеф Луи (25.1.1736, Турин, — 10.4.1813, Париж) - французский математик и механик, член Парижской АН (1772). Родился в семье обедневшего чиновника. Самостоятельно изучал математику. В 19 лет Лагранж уже стал профессором в артиллерийской школе Турина. В 1759 избран член Берлинской АН, а в 1766—87 был её президентом. В 1787 Лагранж переехал в Париж; с 1795 профессор Нормальной школы, с 1797 — Политехнической школы. 

  • Бельтрами

    Бельтрами (Beltrami) Эудженио (16.11.1835, Кремона, — 18.2.1900, Рим) - итальянский математик, член Национальной Академии деи Линчеи в Риме (1873). Профессор университетов в Болонье (1862) и в Риме (1873).

    Основные труды относятся к дифференциальной геометрии. Показал, что геометрия Лобачевского (планиметрия) реализуется на некоторой поверхности, называемой псевдосферой.

  • Дезарг

    Дезарг (Désargues) Жерар [1593, Лион, — 1662, там же (по др. данным — 1591—1661)] - французский математик.

    Был военным инженером. Заложил основы проективной и начертательной геометрии. В своих исследованиях систематически применял перспективное изображение. Первым ввёл в геометрию бесконечно удалённые элементы. Дезарг принадлежит одна из основных теорем проективной геометрии (см. Дезарга теорема). Дезарг принадлежат также сочинения о резьбе по камню и о солнечных часах, где он даёт геометрические обоснования практическим операциям.

  • Гильберт (Хильберт)

    Гильберт, Хильберт (Hilbert) Давид (23.1.1862, Велау, близ Кёнигсберга, — 14.2.1943, Гёттинген) - немецкий математик.

    Окончил Кёнигсбергский университет, в 1893—95 профессор там же, в 1895—1930 профессор Гёттингенского университета, до 1933 продолжал читать лекции в университете, после прихода гитлеровцев к власти в Германии (1933) жил в Гёттингене в стороне от университетских дел. Его исследования оказали большое влияние на развитие многих разделов математики, а его деятельность в Гёттингенском университете в значительной мере содействовала тому, что Гёттинген в 1-й трети 20 в. являлся одним из основных мировых центров математической мысли. Диссертации большого числа крупных математиков (среди них Гильберт Вейль, Р. Курант) были написаны под руководством Гильберта. 

  • Клейн

    Клейн (Kiein) Феликс (25.4.1849, Дюссельдорф,—22.6.1925, Гёттинген) - немецкий математик, член-корреспондент Германской АН в Берлине (1913).

    В 1865 поступил в Боннский университет, учился у Ю. Плюккера; доктор философии Боннского университета (1868). С 1872 профессор математики в Эрлангене, с 1875 в Мюнхенской Высшей технической школе, а с 1880 в Лейпцигском университете. В 1886 Клейн переехал в Геттинген, где оставался до конца жизни. Основные работы Клейн по неевклидовой геометрии, теории непрерывных групп, теории алгебраических уравнений, теории эллиптических функций, теории атоморфных функций.

  • Кэли (Кейли)

    Кэли, Кейли (Cayley) Артур (16.8.1821, Ричмонд, — 26.1.1895, Кембридж) - английский математик.

    С 1863 профессор Кембриджского университета. Основные работы по теории алгебр, квадратичных форм. Установил связь между теорией инвариантов и проективной геометрией. Исследования Кэли в этой области легли в основу истолкования геометрии Лобачевского («интерпретация Кэли — Клейна»). Автор работ по теории определителей, дифференциальных уравнений, эллиптических функций.

    Занимался также сферической астрономией и астрофизикой.

  • Грасман

    Грасман (Grassmann) Герман (15.4. 1809, Штеттин, — 26.9.1877, там же) - немецкий математик, занимавшийся также физикой и филологией. В сочинении «Учение о протяжённых величинах» (1844) дал первое систематическое построение учения о многомерном евклидовом пространстве, способствовавшее развитию векторного и тензорного исчислений. Однако из-за абстрактного изложения и необычайной терминологии сочинение было малодоступным.

    В «Учебнике арифметики» (1861) Грасман сделал попытку строгого изложения арифметики целых чисел и выяснил при этом роль индуктивных определений. В области физики Грасман принадлежат работы по акустике и магнитному взаимодействию токов.

  • Александров П.С.

    АЛЕКСАНДРОВ, ПАВЕЛ СЕРГЕЕВИЧ (1896–1982), русский математик. Родился 25 апреля (7 мая) 1896 в Богородске (ныне Ногинск Московской обл.). В 1913, после окончания частной гимназии с золотой медалью, поступил на математическое отделение Московского университета. В 1915 стал учеником Н.Н.Лузина. Окончил Московский университет в 1917, а с 1921 начал преподавать в университете, где постепенно создал собственную топологическую школу (среди его учеников – академики АН СССР Л.С.Понтрягин и А.Н.Тихонов). В 1929 стал профессором, в 1934 защитил докторскую диссертацию.

  • Эйлер

    Эйлер (Euler) Леонард [4(15).4.1707, Базель, Швейцария, — 7(18).9.1783, Петербург], математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под рук. Я. Бернулли), а в 1720—24 в Базельском университете, где слушал лекции по математике И. Бернулли. 

  • Декарт

    Декарт (Descartes) Рене (латинизированное имя — Картезий; Renatus Cartesius) [31.3.1596, Лаэ (Турень), — 11.2.1650, Стокгольм] - французский философ и математик. Происходил из старинного дворянского рода. Образование получил в иезуитской школе Ла Флеш в Анжу. В начале Тридцатилетней войны служил в армии, которую оставил в 1621; после нескольких лет путешествий переселился в Нидерланды (1629), где провёл двадцать лет в уединённых научных занятиях. Здесь вышли его главные сочинения — «Рассуждение о методе...» (1637, рус. пер. 1953), «Размышления о первой философии...» (1641, рус. пер. 1950), «Начала философии» (1644, рус. пер. 1950). В 1649 по приглашению шведской королевы Кристины переселился в Стокгольм, где вскоре умер.

  • Лобачевский

    Лобачевский Николай Иванович [20.11(1.12).1792, Нижний Новгород, ныне г. Горький, — 12 (24).2.1856, Казань] - русский математик, создатель неевклидовой геометрии, мыслитель-материалист, деятель университетского образования и народного просвещения. Родился в семье мелкого чиновника. Почти всю жизнь Лобачевский провёл в Казани. Там он учился в гимназии (1802—07) на казённом содержании, затем в Казанском университете (1807—11). Рано обнаружил выдающиеся способности, по окончании университета получил степень магистра (1811) и был оставлен при университете; в 1814 стал адъюнктом, в 1816 — экстраординарным и в 1822 — ординарным профессором. Несмотря на реакционную обстановку, сложившуюся в годы попечительства М. Лобачевский Магницкого, Лобачевский вёл напряжённую научную и педагогическую работу (преподавал математику, физику и астрономию), закупил в столице оборудование для физического кабинета и книги для библиотеки, а затем возглавлял её 10 лет (с 1825);

  • Псевдосфера

    Псевдосфера - поверхность постоянной отрицательной кривизны, образуемая вращением особой кривой, т. н. трактрисы, около её асимптоты. Название подчёркивает сходство и различие со сферой, которая является примером поверхности с кривизной, также постоянной, но положительной. Интерес к изучению Псевдосфера обусловлен тем, что фигуры, начерченные на гладких частях этой поверхности, подчиняются законам неевклидовой геометрии Лобачевского. Этот факт, установленный в 1868 Э. Бельтрами, сыграл существенную роль в споре о реальности Лобачевского геометрии.

  • Тетраэдр

    Тетраэдр принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Тетраэдр - простейший многогранник, его гранями являются четыре равносторонних треугольника. Несмотря на свою простоту, тетраэдр - полноправный представитель семейства платоновых тел. Все его грани - одинаковые правильные многоугольники, все его многогранные углы равны.

    Тетраэдр - пространственный аналог плоского равностороннего треугольника, поскольку он имеет наименьшее число граней, отделяющих часть трехмерного пространства

  • Призма, параллелепипед

    Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие в этих плоскостях, параллельны, называется призмой.

    Определение. Призма, основание которой - параллелограмм, называется параллелепипедом.

    В соответствии с определением параллелепипед - это четырехугольная призма, все грани которой - параллелограммы (рис.   ). Параллелепипеды, как и призмы, могут быть прямыми и наклонными. На рисунке   изображен наклонный параллелепипед, а на рисунке     - прямой параллелепипед. 

  • Призма и пирамида

    Подобно тому, как треугольник в понимании Евклида не являются пустым, т. е. представляет собой часть плоскости, ограниченную тремя неконкурентными (т. е. не пересекающимися в одной точке) отрезками, так и многогранник у него не пустой, не полый, а чем-то заполненный (по-нашему - частью пространства). В античной математике, однако, понятия отвлеченного пространства еще не было. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями - параллелограммами.

  • Призма

    Рассмотрим произвольный многоугольник, например, пятиугольник АВСDЕ (см. чертеж на стр. 25), который лежит в плоскости a. Рассмотрим теперь параллельный перенос, определяемый некоторым ненулевым вектором V, не лежащим в плоскости. Образом плоскости a будет параллельная ей плоскость b. Образом многоугольника Ф будет многоугольник Ф1=A1B1C1D1E1, лежащий в плоскости b. Направленные отрезки AA1, BB1 будут параллельны, так как каждый из них изображает один и тот же вектор V. Многогранник ABCDEA1B1C1D1E1 называют призмой.

  • Полиэдр

    Полиэдр (от поли... и греч. hеdra — основание, грань), 1) то же, что многогранник. 2) Геометрическая фигура, являющаяся объединением (суммой) конечного числа выпуклых многогранников произвольного числа измерений, произвольно расположенных в n-мерном пространстве (в этом смысле, в частности, термин «П.» употребляется в топологии). Это понятие легко обобщается и на случай n-мерного пространства: возьмём в n-мерном пространстве Rn т. н. полупространство, т. е. множество всех точек, расположенных по одну сторону какой-либо (n - 1)-мерной плоскости этого пространства, включая точки самой плоскости (аналитически речь идёт о множестве всех точек пространства Rn).

  • Куб, или гексаэдр

    Куб, или гексаэдр, принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников. Пожалуй, куб - наиболее известный и используемый многогранник. Этот многогранник имеет шесть квадратных граней, сходящихся в вершинах по три.

  • Предмет стереометрии

    Школьный курс геометрии состоит из двух частей: планиметрии и стереометрии. В планиметрии изучаются свойства геометрических фигур на плоскости. Простейшими и, можно сказать, основными фигурами в пространстве являются точки, прямые и плоскости. Наряду с этими фигурами мы будем рассматривать геометрические тела и их поверхности.

  • Аксиомы стереометрии

    В планиметрии основными фигурами были точки и прямые. В стереометрии наряду с ними рассматривается еще одна основная фигура - плоскость. Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.

    Комментарии: 16