Дифференциальная геометрия

Дифференциальная геометрия - раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Дифференциальной геометрии являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и поверхностей. Обычно в Дифференциальная геометрия исследуются локальные свойства геометрических образов, которые присущи сколь угодно малой их части. Рассматриваются также и свойства геометрических образов в целом (например, свойства замкнутых выпуклых поверхностей).

Геометрические объекты, изучаемые в Дифференциальной геометрии, обычно подчинены некоторым требованиям гладкости. Как правило, эти требования выражаются в том, что функции, задающие указанные объекты, не менее двух раз непрерывно дифференцируемы.

Сущность методов Дифференциальная геометрия, применяемых для выяснения локальных свойств геометрических объектов, проще всего уяснить на примере локального исследования формы кривых.

Возникновение Дифференциальной геометрии связано с именами Л. Эйлера и Г. Монжа. Ими к концу 18 в. были получены важные факты теории поверхностей. Значительный вклад в развитие Дифференциальная геометрия сделан в начале 19 в. К. Гауссом, который ввёл обе основные квадратичные формы. Им же была доказана теорема об инвариантности полной кривизны относительно изометрических преобразований. Фактически им были заложены основы внутренней геометрии поверхностей. Построение основ классической теории поверхностей было завершено в середине 19 в. основателем московской геометрической школы К. М. Петерсоном. В середине и во 2-й половине 19 в. много глубоких и общих результатов по классической теории поверхностей было получено Ф. Миндингом, Ж. Лиувиллем, Э. Бельтрами, Ж. Г. Дарбу, Л. Бианки. Ряд замечательных результатов по классической Дифференциальная геометрия был получен русскими учёными Д. Ф. Егоровым, Н. Н. Лузиным, С. П. Финиковым и др.