Математическое и идеальное число

Совершенно особое место в греческом умосозерцании занимает понятие меры. «Ничего слишком», ничего сверх меры, — один из фундаментальных и в то же время наиболее сокровенных заветов античной культуры может служить тому подтверждением. Все, что превышает меру, уклоняется в ту или иную крайность, необузданное и чрезмерное, и представляет становящееся ко злу и обреченное смерти.

Поэтому для греков мудрый и свободный – тот, кто блюдет во всем меру. Мера же прежде всего связана с числом, ибо мера – точна, вне приблизительности и непознаваемости «более или менее», определенна, т. е. причастна пределу, и, как и истинное знание, не может быть иной.

Античные мыслители вводят разнообразные и весьма тонкие различения, связанные с числом, предпринимая попытки, особенно частные в поздней античности, в неопифагореизме и неоплатонизме, истолкования значений тех или иных чисел (например, у Ямвлиха и Анатолия) в пределах первой десятки. Основываясь на пифагорейской аритмологии, Платон в конце жизни развивает учение о разных типах числа – математическом и эйдетическом, или идеальном. Математическое число – это число, которое получается из предыдущего прибавлением единицы (греческие математики признавали только натуральные числа). А для этого нужно наряду с первой и единственной единицей признать операцию прибавления единицы, т. е. фактически неопределенную двоицу, дающую нескончаемое множество единиц. Эйдетическое же число – сущее само по себе и, хотя и находится в некотором числовом ряду, тем не менее оно не связано с соседними числами через прибавление или отнятие единицы. В этом смысле идеальное число – это принцип математического числа – это сама по себе «двойка», сама по себе «тройка» и т. д., и их можно рассматривать как начала всех возможных двоек, троек и т. д., причем единицами идеальных чисел нет нужды быть взаимно сопоставимыми, — они оказываются различенными как начала различных идеальных чисел.