4 этапа развития геометрии

Развитие геометрии

В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.

Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.

Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались. С этого времени начинается второй период развития Геометрии. Известны упоминания систематические изложения Геометрия, среди которых данное в 5 в. до н. э. Гиппократом Хиосским. Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. «Начала» Евклида. Здесь Геометрия представлена так, как её в основном понимают и теперь, если ограничиваться элементарной геометрией; это наука о простейших пространственных формах и отношениях, развиваемая в логической последовательности, исходя из явно формулированных основных положений — аксиом и основных пространственных представлений. Геометрия, развиваемая на тех же основаниях (аксиомах), даже уточнённую и обогащенную как в предмете, так и в методах исследования, называется евклидовой геометрией. Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в. до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и Геометрия на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии Геометрия, однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.

Возрождение наук и искусств в Европе повлекло дальнейший расцвет Геометрии. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в Геометрия метод координат. Метод координат позволил связать Геометрия с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в Геометрия породило аналитическую Геометрия, а потом и дифференциальную. Геометрия перешла на качественно новую ступень по сравнению с Геометрией древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы. С этого времени начинается третий период развития Геометрии.

Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, Геометрия Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования (понятию «дифференциальная Геометрия» придаётся теперь часто более общий смысл, о чём см. в разделе Современная геометрия). Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля. Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений Геометрии были даны в 18 — начале 19 вв. Эйлером для аналитической Геометрии (1748), Монжем для дифференциальной Геометрии (1795), Ж. Понселе для проективной Геометрии (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии. Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) Геометрия оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.

Четвёртый период в развитии Геометрии открывается построением Н. И. Лобачевским в 1826 новой, неевклидовой Геометрии, называемой теперь Лобачевского геометрией. Независимо от Лобачевского в 1832 ту же Геометрия построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Источник, сущность и значение идей Лобачевского сводятся к следующему. В геометрии Евклида имеется аксиома о параллельных, утверждающая: «через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной». Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: «через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые». Это и есть аксиома Лобачевского. По мысли Лобачевского, присоединение этого положения к другим основным положениям Геометрия приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову Геометрия Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую Геометрия, логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям. Лобачевский рассматривал свою Геометрия как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование (см. раздел Истолкования геометрии).

Переворот в Геометрия, произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван «Коперником геометрии». В его идеях были намечены три принципа, определившие новое развитие Геометрия Первый принцип заключается в том, что логически мыслима не одна евклидова Геометрия, но и другие «геометрии». Второй принцип — это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой Геометрия Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой Геометрия Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой Геометрия, т.к. она определяется логической состоятельностью (непротиворечивостью) этой Геометрия Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая — в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики. Перечисленные общие принципы сыграли важную роль не только в Геометрия, но и в математике вообще, в развитии её аксиоматического метода, в понимании её отношения к действительности.

Главная особенность нового периода в истории Геометрии, начатого Лобачевским, состоит в развитии новых геометрических теорий — новых «геометрий» и в соответствующем обобщении предмета Геометрия; возникает понятие о разного рода «пространствах» (термин «пространство» имеет в науке два смысла: с одной стороны, это обычное реальное пространство, с другой — абстрактное «математическое пространство»). При этом одни теории складывались внутри евклидовой Геометрия в виде её особых глав и лишь потом получали самостоятельное значение. Так складывались проективная, аффинная, конформная Геометрия и др., предметом которых служат свойства фигур, сохраняющиеся при соответствующих (проективных, аффинных, конформных и др.) преобразованиях. Возникло понятие проективного, аффинного и конформного пространств; сама евклидова Геометрия стала рассматриваться в известном смысле как глава проективной Геометрия Др. теории, подобно геометрии Лобачевского, с самого начала строились на основе изменения и обобщения понятий евклидовой Геометрия Так, создавалась, например, многомерная Геометрия; первые относящиеся к ней работы (Геометрия Грасман и А. Кэли, 1844) представляли формальное обобщение обычной аналитической Геометрия с трёх координат на n. Некоторый итог развития всех этих новых «геометрий» подвёл в 1872 Ф. Клейн, указав общий принцип их построения.

Принципиальный шаг был сделан Б. Риманом (лекция 1854, опубликована 1867). Во-первых, он ясно формулировал обобщённое понятие пространства как непрерывной совокупности любых однородных объектов или явлений (см. раздел Обобщение предмета геометрии). Во-вторых, он ввёл понятие пространства с любым законом измерения расстояний бесконечно малыми шагами (подобно измерению длины линии очень малым масштабом). Отсюда развилась обширная область Геометрия, т. н. риманова геометрия и её обобщения, нашедшая важные приложения в теории относительности, в механике и др.

В тот же период зародилась топология как учение о тех свойствах фигур, которые зависят лишь от взаимного прикосновения их частей и которые тем самым сохраняются при любых преобразованиях, не нарушающих и не вводящих новых прикосновений, т. е. происходящих без разрывов и склеиваний. В 20 в. топология развилась в самостоятельную дисциплину.

Так Геометрия превратилась в разветвленную и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т.д.) и фигуры в этих пространствах.

Одновременно с развитием новых геометрических теорий велась разработка уже сложившихся областей евклидовой Геометрии — элементарной, аналитической и дифференциальной Геометрии. Вместе с тем в евклидовой Геометрии появились новые направления. Предмет Геометрии расширился и в том смысле, что расширился круг исследуемых фигур, круг изучаемых их свойств, расширилось само понятие о фигуре. На стыке анализа и Геометрия возникла в 70-х гг. 19 в. общая теория точечных множеств, которая, однако, уже не причисляется к Геометрия, а составляет особую дисциплину (см. Множеств теория). Фигура стала определяться в Геометрия как множество точек. Развитие Геометрии было тесно связано с глубоким анализом тех свойств пространства, которые лежат в основе евклидовой Геометрии. Иными словами, оно было связано с уточнением оснований самой евклидовой Геометрии. Эта работа привела в конце 19 в. (Д. Гильберт и др.) к точной формулировке аксиом евклидовой Геометрии, а также других «геометрий».