admin

Требования к стройматериалам

Влажность материала определяется содержанием влаги, отнесенным к массе материала в сухом состоянии. Влажность материала зависит как от свойств самого материала (пористости, гигроскопичности), так и от окружающей его среды (влажность воздуха, наличие контакта с водой).

Влагоотдача — свойство материала отдавать влагу окружающему воздуху, характеризуемое количеством воды (в процентах по массе или объему стандартного образца), теряемой материалом в сутки при относительной влажности окружающего воздуха 60 % и температуре 20'С.

Величина влагоотдачи имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, мокрой штукатурки стен, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря влагоотдаче высыхают: вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха, т. е. пока материал не достигнет воздушно-сухого состояния.

Гигроскопичностью называют свойство пористых материалов поглощать определенное количество воды при повышении влажности окружающего воздуха. Древесина и некоторые теплоизоляционные материалы вследствие гигроскопичности могут поглощать большое количество воды, при этом увеличивается их масса, снижается прочность, изменяются размеры. В таких случаях для деревянных и ряда других конструкций приходится применять защитные покрытия.

Водопроницаемость—свойство материала пропускать воду под давлением. Величина водопроницаемости характеризуется количеством воды, прошедшей в течение 1 ч через 1 см2 площади испытуемого материала при постоянном давлении. К водонепроницаемым материалам относятся особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).

Морозостойкость—свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности.
Замерзание воды, заполняющей поры материала, сопровождается увеличением ее объема примерно на 9%. в результате чего возникает давление на стенки пор, приводящее к разрушению материала. Однако во многих пористых материалах вода не может заполнить более 90 % объема доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения. Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Парои газопроницаемость — свойство материала пропускать через свою толщу под давлением водяной пар или газы (воздух). Все пористые материалы при наличии незамкнутых пор способны пропускать пар или газ.

Парои газопроницаемость материала характеризуется соответственно коэффициентом пароили газопроницаемости, который определяется количеством пара или газа в л, проходящего через слой материала толщиной 1 м и площадью 1 м2 в течение 1 ч при разности парциальных давлений на противоположных стенках 133,3 Па.

Знать теплопроводность материала необходимо при теплотехническом расчете толщины стен и перекрытий отапливаемых зданий, а также при определении требуемой толщины тепловой изоляции горячих поверхностей, например трубопроводов, заводских печей и т. д.

Теплоемкость—свойство материала поглощать при нагревании определенное количество теплоты и выделять ее при охлаждении,

Показателем теплоемкости служит удельная теплоемкость, равная количеству теплоты (Дж), необходимому для нагревания 1 кг материала на 1 °С. Удельная теплоемкость, кДж(кг-°С), искусственных каменных материалов 0,75—0,92, древесины — 2,4—2,7, стали — 0,48, воды—4.187.

Теплоемкость материалов учитывают при расчетах теплоустойчивости стен и перекрытий отапливаемых зданий, подогрева составляющих бетона и раствора для зимних работ, а также при расчете печей.
Огнестойкость— способность материала противостоять действию высоких температур и воды в условиях пожара. По степени огнестойкости строительные материалы делят на несгораемые, трудно сгораемые и сгораемые.

Несгораемые материалы под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются. К этим материалам относят природные каменные материалы, кирпич, бетон, сталь. Трудно сгораемые материалы под действием огня с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются. Примером таких материалов могут служить древесно-цементный материал фибролит и асфальтовый бетон. Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и продолжают гореть после удаления источника огня. К этим материалам в первую очередь следует отнести дерево, войлок, толь и рубероид,

Огнеупорностью называют свойство материала выдерживать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. По степени огнеупорности материалы делят на огнеупорные, тугоплавкие и легкоплавкие .

Огнеупорные материалы способны выдерживать продолжительное воздействие температуры свыше 1580°С. Их применяют для внутренней облицовки промышленных печей (шамотный кирпич). Тугоплавкие материалы выдерживают температуру от 1350 до 1580°С (гжельский кирпич для кладки печей). Легкоплавкие материалы размягчаются при температуре ниже 1350 °С (обыкновенный глиняный кирпич).
Теплопроводность — свойство материала передавать через толщу теплоту при наличии разности температур на поверхностях, ограничивающих материал. Теплопроводность материала оценивается количеством теплоты, проходящей через стену из испытуемого материала толщиной 1 м, площадью 1 м2 за 1 ч при разности температур противоположных поверхностей стены 1 °С. Теплопроводность измеряется в Вт/(м?К) или Вт/(м?°С).

Теплопроводность материала зависит от многих факторов: природы материала, его строения, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Материал кристаллического строения обычно более теплопроводен, чем материал аморфного строения. Если материал имеет слоистое или волокнистое строение, то теплопроводность его зависит от направления потока теплоты по отношению к волокнам, например, теплопроводность древесины вдоль волокон в 2 раза больше, чем поперек волокон.

На теплопроводность материала в значительной мере влияют величина пористости, размер и характер пор. Мелкопористые материалы менее теплопроводны, чем крупнопористые, даже если их пористость одинакова. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами. Теплопроводность однородного материала зависит от величины его средней плотности. Так, с уменьшением плотности материала теплопроводность уменьшается и наоборот. Теплопроводность в воздушно-сухом состоянии тяжелого бетона 1,3—1,6, керамического кирпича 0,8—0,9, минеральной ваты 0,06—0,09 Вт/(мС).