admin

Метод половинного деления. Алгоритм

Решение алгебраического уравнения. Для численного решения алгебраических уравнений существует множество способов. Среди самых известных можно назвать метод Ньютона, метод Хорд, и «всепобеждающий» метод Половинного Деления. Сразу оговоримся, что любой метод является приближенным, и по сути дела лишь уточняющим значение корня. Однако уточняющим до любой точности, заданной Нами.

Метод половинного деления или дихотомии (дихотомия - сопоставленность или противопоставленность двух частей целого) при нахождении корня уравнения f(x)=0 состоит в делении пополам отрезка [a; b], где находится корень. Затем анализируется изменение знака функции на половинных отрезках, и одна из границ отрезка [a; b] переносится в его середину. Переносится та граница, со стороны которой функция на половине отрезка знака не меняет. Далее процесс повторяется. Итерации прекращаются при выполнении одного из условий: либо длина интервала [a; b] становится меньше заданной погрешности нахождения корня ?, либо функция попадает в полосу шума ?1 - значение функции сравнимо с погрешностью расчетов.


Сначала поставим задачу. Дана монотонная, непрерывная функция f(x), которая содержит корень на отрезке [a,b], где b>a. Определить корень с точностью ?, если известно, что f(a)*f(b)<0

Дано уравнение вида:

f(x)=0; (1)

необходимо найти удовлетворяющие ему значения x.

Итак, приступим к решению. Первым делом, определимся, что значит f(x)=0. Посмотрите на рис.1. На нем изображен график некоей функции. В некоторых точках этот график пересекает ось абсцисс. Координаты x этих точек нам и нужно найти. Если вид уравнения простой или стандартный, например, квадратное уравнение или линейное, то применять численный метод здесь совершенно ни к чему. Но если уравнение у нас такое:


f(x)=x3-14x2+x+ex; (2)

то ни в каком учебнике вы не найдете метода аналитического решения этого кошмара. Здесь и приходит на помощь непобедимый численный метод. Метод половинного деления. Из самого названия метода можно предположить, что нам понадобится что-то делить пополам.

Ученикам метод половинного деления можно преподнести в виде решения задачи.


Задача

Идет осада неприятельской крепости. На некотором расстоянии от нее установили новую пушку. Под каким углом к горизонту надо стрелять из этой пушки, чтобы попасть в заданный участок крепостной стены.

Над моделью этой задачи физики изрядно поработали. Оно и понятно: ведь многие научные задачи, как и эта, возникали прежде всего в военном деле. И решение этих задач почти всегда считалось приоритетным.

Какие же факторы принять за существенные в этой задаче? Поскольку речь идет о средневековье, то скорость снаряда и дальность полета невелики. Значит можно считать несущественным, что Земля круглая (помните обсуждение в параграфе 27), и пренебречь сопротивлением воздуха. Остается единственный фактор - сила земного притяжения.

Математик тут бы сказал, что надо решить уравнение. Мы тоже будем решать, только приближенно и очень похоже на то, как делают настоящие артиллеристы. Они же поступают следующим образом: производят несколько выстрелов, беря цель «в вилку», т.е. одно попадание выше цели, а другое ниже. Затем делят пополам угол между этими выстрелами, и при стрельбе под таким углом снаряд ложится к цели намного ближе. Но если все же не попали, то новую «вилку» снова делят пополам и т.д.

Мы заранее можем указать «вилку» для угла: 0 и ?/4 (мы надеемся, что вы помните какой угол имеет радианную меру ?/4 и чему приближенно равно ?). А дальше будем делить пополам эту «вилку» и смотреть, куда попадает снаряд, пока не добьемся нужного результата.

Как же долго нам придется вести «пристрелку», чтобы получить угол ?, с нужной точностью? Чтобы ответить на этот вопрос, отвлечемся от нашей задачи и сформулируем на чисто математическом языке, что и как мы находили.

Нам даны некоторая функция f(x) и отрезок [a;b], причем на концах этого отрезка эта функция принимает значения противоположных знаков. Если функция непрерывна, т.е. ее график - непрерывная линия, то ясно, что график функции пересекает ось абцисс в некоторой точке с отрезка [a;b], как показано на рисунке 1. Иными словами, f(c)=0, т.е. с - корень уравнения f(x)=0.

Как же предлагается находить этот корень? А вот так. Делим отрезок [a;b] пополам, т.е. берем середину отрезка а+b/2. В этой точке вычисляем значение функции f(x) (рис. 2). Если это значение 0, то корень найден; если нет, то оно имеет тот же знак, что и значение на одном из концов отрезка [a;b]. Тогда этот конец заменям точкой а+b/2. Новый отрезок тоже содержит корень уравнения f(x)=0, поскольку на его концах функция f(x) снова имеет разные знаки. Однако этот отрезок в 2 раза короче предыдущего. И самое главное - с ним можно поступить точно так же. со следующим отрезком еще раз проделать то же самое и т.д. поскольку длина отрезка каждый раз уменьшается вдвое, мы можем получить отрезок сколь угодно малой длины, внутри которого содержится корень уравнения f(x)=0. Например, если исходный отрезок был [3;4], т.е. имел длину 1, то через десять шагов мы получим отрезок длиной. Это означает, что концы отрезка дают нам приближенное значение корня с точностью, равной длине отрезка: левый конец отрезка - приближенное значение корня с недостатком, правый конец - приближенное значение корня с избытком.

Фактически мы сейчас сформулировали метод приближенного решения уравнения f(x)=0. Его можно было бы назвать методом артиллерийской пристрелки. Но математики называют его методом половинного деления.

Далее ученикам предлагается записать алгоритм и блок-схему нахождения корня уравнения с помощью метода половинного деления.

Алгоритм

1) Найдем середину отрезка [a; b]: c=(a+b)/2;

2) Вычислим значения функции в точках a и c и найдем произведение полученных значений: d=f(c)?f(a);

3) Если d>0, то теперь точкой a станет c: a=c; Если d<0, то точкой b станет c: b=c;

4) Вычислим разность a и b, сравним ее с точностью ?: если |a-b|> ?, то идем в пункт 1) если нет, то корень с нужной нам точностью найден, и он равен: x=(a+b)/2;

  • Определить корни уравнения x2 -3.2x2 -2.5x -5.4=0 аналетически и уточните их метдом половинного деления с точностью до 0.01


    Гость
  • Решить методом половинного деления уравнение x^2-7x+10=0 на интервале от 6 до 10 с точностью 0, 01

    Гость Айгуль
  • 4х+3х-20=0 с точностью е=0, 01

    Гость андрей
  • Решить уравнение cos x- e^ -x ^2/2+ x-1=0 на отрезке [1;2] методом половинного деления.

    Гость gosti
  • 😇😍😪😪

    Гость
  • 👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👽👽

    Гость Гость Гость
  • 🐷🐧🐭?🐾

    Гость Гость Гость
  • помогло

    Гость
  • 👀👀👀👀

    Гость
  • 😁😁😄😄👀😆💋💋

    Гость