Газы природные – это газы, содержащиеся в недрах Земли, а также газы земной атмосферы. Газы природные частично растворены в подземных и наземных водах и нефтях, сорбированы углями и некоторыми глинистыми породами. Газы природные выделяются из недр земли при вулканической деятельности по тектоническим трещинам, связанным с газоносными пластами, выносятся минеральными источниками. Газы природные можно подразделить на газы биохимические, вулканические, метаморфические, воздушного и химического происхождения, на газы радиоактивных и термоядерных процессов.
При вскрытии пласта скважиной вначале начинает фонтанировать газ газовой шапки, а затем,по мере падения давления, начинает выделяться газ, растворенный в нефти. В некоторых случиях, когда газ полностью растворен в нефти, он добывается вместе с нефтью. Количество газа в кубических метрах, приходящееся на 1 m добываемой нефти, называют газовым фактором, который для различных месторождений неодинаков и зависит от природы месторождения, режима его эксплуатации и может изменяться от 1-2 м до нескольких тысяч м на 1 m добываемой нефти. Состав газов нефтяных попутных зависит от природы нефти, в который они заключены, а также от принятой схемы отделения газа от нефти при выходе их из скважины.
Газы нефтяные попутные используют в качестве топлива и химического сырья. Энергетическое использование связано с высокой теплотворной способностью газов нефтяных попутных, которая колеблется от 9300 до 14000 ккал/м углеводородной части газа. При электрокрекинге из метана образуется ацетилен, при конверсии метана перегретым водяным паром или CO присутствии катализаторов – смесь CO и H , применяющаяся во многих органических синтезах.
Газы нефтяные попутные – это природные газы, сопровождающие нефть и выделяющиеся при ее добыче. Характерной особенностью состава газов нефтяных попутных является наличие в них, кроме метана, также этана, пропана, бутанов и паров более тяжелых углеводородов. Во многих газах нефтяных попутных присутствуют сероводород и негорючие компоненты: азот, углекислый газ, а также редкие газы – He, Ar. Последние содержатся в количествах, редко представляющих прмышленный интерес.
Эспумизан действует по всему ходу ЖКТ (желудочно-кишечного тракта), поэтому может применяться как при верхней (отрыжки, желудочный пневматоз), так и при нижней (собственно метеоризм) диспепсии. Являясь инертным соединением, не оказывает влияния на химическую среду ЖКТ, не изменяет рН (в отличие от хилак-форте, абомина, пепсина и др.), не замедляет и не ускоряет всасывание других веществ, не кумулируется и не способствует кумуляции. Основные преимущества: быстродействие (возможность получения качественных результатов исследования без длительной подготовки, быстрое устранение неприятных и болевых ощущений, что способствует улучшению психологического фона и комплаенса - пациент или его родители будут выполнять назначения врача, если увидят эффективность терапии, и наоборот, доверие к врачу и комплаенс снижаются, если быстрого облегчения самочувствия не отмечается.
Существуют два основных источника газов в желудочно-кишечном тракте. Первый - это проглоченный воздух, который либо высвобождается в процессе отрыжки, либо проходит дальше через кишечник и должен выводиться через прямую кишку. Второй источник - это сам кишечник, продуцирующий газы, которые в конечном счете должны покинуть организм также через задний проход. Оба этих процесса совершенно нормальны.
Скопление газов в кишечнике называется метеоризм.
Электрические свойства Газов связаны в первую очередь с возможностью ионизации молекул или атомов, т. е. с появлением в Газе электрически заряженных частиц (ионов и электронов). При отсутствии заряженных частиц Газы являются хорошими диэлектриками. С ростом концентрации зарядов электропроводность Газов увеличивается. Зависимость электропроводности Газы от различных физических факторов рассмотрена в ст. Электрический разряд в газах.
Давление газа, заключенного в постоянный объем, не является прямо пропорциональным температуре, отсчитанной по Шкале Цельсия. Это ясно, например, из таблицы, приведенной в предыдущей главе. Если при 100° С давление газа равно 1,37 кг1см2, то при 200° С оно равно 1,73 кг/см2. Температура, отсчитанная по термометру Цельсия, увеличилась вдвое, а давление газа увеличилось только в 1,26 раза. Ничего удивительного, конечно, в этом нет, ибо шкала термометра Цельсия установлена условно, без всякой связи с законами расширения газа. Можно, однако, пользуясь газовыми законами, установить такую шкалу температур, что давление газа будет прямо пропорционально температуре, измеренной по этой новой шкале.
Физические свойства газов представлены в таблице...
Предположим, что мы имеем 1 г газа. Сколько надо сообщить ему теплоты для того, чтобы температура его увеличилась на 1°С, другими словами, какова удельная теплоемкость газа? На этот вопрос, как показывает опыт, нельзя дать однозначного ответа. Ответ зависит от того, в каких условиях происходит нагревание газа. Если объем его не меняется, то для нагревания газа нужно определенное количество теплоты; при этом увеличивается также давление газа. Если же нагревание ведется так, что давление его остается неизменным, то потребуется иное, большее количество теплоты, чем в первом случае; при этом увеличится объем газа. Наконец, возможны и иные случаи, когда при нагревании меняются и объем, и давление; при этом потребуется количество теплоты, зависящее от того в какой мере происходят эти изменения.
Мы установили, как зависит давление газа от температуры, если объем остается неизменным. Теперь посмотрим, как меняется давление некоторой массы газа в зависимости от занимаемого ею объема, если температура остается неизменной. Однако, прежде чем перейти к этому вопросу, надо выяснить, как поддерживать температуру газа неизменной. Для этого надо изучить, что происходит, с температурой газа, если объем его меняется настолько быстро, что теплообмен газа с окружающими телами практически отсутствует.
Каковы скорости, с которыми движутся молекулы, в частности молекулы газов? Этот вопрос естественно возник тотчас же, как были развиты представления о молекулах. Долгое время скорости молекул удавалось оценить только косвенными расчетами, и лишь сравнительно недавно были разработаны способы прямого определения скоростей газовых молекул. Прежде всего уточним, что надо понимать под скоростью молекул.
В предыдущей главе мы выяснили на основании закона Бойля — Мариотта, что при неизменной температуре давление газа пропорционально его плотности. Если плотность газа меняется, то во столько же раз меняется и число молекул в 1 см3. Если газ не слишком сжат и движение газовых молекул можно считать совершенно независимым друг от друга, то число ударов за 1 сек на 1 см2 стенки сосуда пропорционально числу молекул в 1 см3. Следовательно, если средняя скорость молекул не меняется с течением времени (мы уже видели, что в макромире это означает постоянство температуры), то давление газа должно быть пропорционально числу молекул в 1 см3, т.е. плотности газа.
По магнитным свойствам Газы делятся на диамагнитные (к ним относятся, например, инертные газы, H2, N2, CO2, H2O) и парамагнитные (например, O2). Диамагнитны те Газы, молекулы которых не имеют постоянного магнитного момента и приобретают его лишь под влиянием внешнего поля. Те же Газы, у которых молекулы обладают постоянным магнитным моментом, во внешнем магнитном поле ведут себя как парамагнетики.
Кинетические свойства Газов — теплопроводность, диффузию, вязкость — молекулярно-кинетическая теория рассматривает с единой точки зрения: диффузию как перенос молекулами массы, теплопроводность как перенос ими энергии, вязкость как перенос количества движения. Модель идеального Газы для анализа явлений переноса непригодна, ибо в этих процессах существенную роль играют столкновения молекул (при которых происходит передача какой-нибудь из переносимых величин, например энергии) и «размер» молекул (влияющий на частоту столкновений).
Как ведет себя газ, если меняются его температура и объем, а давление остается постоянным?
Рассмотрим такой опыт. Коснемся ладонью сосуда, в котором горизонтальный столбик ртути запирает некоторую массу воздуха. Газ в сосуде нагреется, его давление повысится, и ртутный столбик начнет перемещаться вправо. Движение столбика прекратится, когда благодаря увеличению объема воздуха в сосуде давление его сделается равным наружному. Таким образом, в конечном результате этого опыта объем воздуха при нагревании увеличился, а давление осталось неизменным.
Экспериментальный:
Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.
Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению...
Что происходит в микромире молекул, когда температура газа меняется, например когда температура газа повышается и давление его увеличивается? С точки зрения молекулярной теории возможны две причины увеличения давления, данного газа: во-первых, могло увеличиться число ударов молекул на 1 см2 в течение 1 сек; во-вторых, могло увеличиться количество движения, передаваемое при ударе в стенку одной молекулой.
В природе и в технике мы очень часто имеем дело со смесью нескольких газов. Самый важный пример этого — воздух, являющийся смесью азота, кислорода, аргона, углекислого газа и других газов. От чего зависит давление смеси газов?
Поместим в колбу кусок вещества, химически связывающего кислород из воздуха (например, фосфор), и быстро закроем колбу пробкой с трубкой. присоединенной к ртутному манометру. Через некоторое время весь кислород воздуха соединится с фосфором. Мы увидим, что манометр покажет меньшее давление, чем до удаления кислорода. Значит, присутствие кислорода в воздухе увеличивает его давление.
Количественное исследование зависимости объема газа от температуры при неизменном давлении было произведено французским физиком и химиком Гей-Люссаком (1778—1850) в 1802 г.
Опыты показали, что увеличение объема газа пропорционально приращению температуры. Поэтому тепловое расширение газа можно, так же, как и для других тел, охарактеризовать при помощи коэффициента объемного расширения.