• Теплоемкость газов

    Предположим, что мы имеем 1 г газа. Сколько надо сообщить ему теплоты для того, чтобы температура его увеличилась на 1°С, другими словами, какова удельная теплоемкость газа? На этот вопрос, как показывает опыт, нельзя дать однозначного ответа. Ответ зависит от того, в каких условиях происходит нагревание газа. Если объем его не меняется, то для нагревания газа нужно определенное количество теплоты; при этом увеличивается также давление газа. Если же нагревание ведется так, что давление его остается неизменным, то потребуется иное, большее количество теплоты, чем в первом случае; при этом увеличится объем газа. Наконец, возможны и иные случаи, когда при нагревании меняются и объем, и давление; при этом потребуется количество теплоты, зависящее от того в какой мере происходят эти изменения.

  • Температура газа и объём

    Мы установили, как зависит давление газа от температуры, если объем остается неизменным. Теперь посмотрим, как меняется давление некоторой массы газа в зависимости от занимаемого ею объема, если температура остается неизменной. Однако, прежде чем перейти к этому вопросу, надо выяснить, как поддерживать температуру газа неизменной. Для этого надо изучить, что происходит, с температурой газа, если объем его меняется настолько быстро, что теплообмен газа с окружающими телами практически отсутствует.

  • Скорости молекул газа

    Каковы скорости, с которыми движутся молекулы, в частности молекулы газов? Этот вопрос естественно возник тотчас же, как были развиты представления о молекулах. Долгое время скорости молекул удавалось оценить только косвенными расчетами, и лишь сравнительно недавно были разработаны способы прямого определения скоростей газовых молекул. Прежде всего уточним, что надо понимать под скоростью молекул.

  • Молекулярное толкование з.Бойля — Мариотта

    В предыдущей главе мы выяснили на основании закона Бойля — Мариотта, что при неизменной температуре давление газа пропорционально его плотности. Если плотность газа меняется, то во столько же раз меняется и число молекул в 1 см3. Если газ не слишком сжат и движение газовых молекул можно считать совершенно независимым друг от друга, то число ударов за 1 сек на 1 см2 стенки сосуда пропорционально числу молекул в 1 см3. Следовательно, если средняя скорость молекул не меняется с течением времени (мы уже видели, что в макромире это означает постоянство температуры), то давление газа должно быть пропорционально числу молекул в 1 см3, т.е. плотности газа.

  • Магнитные свойства газов

    По магнитным свойствам Газы делятся на диамагнитные (к ним относятся, например, инертные газы, H2, N2, CO2, H2O) и парамагнитные (например, O2). Диамагнитны те Газы, молекулы которых не имеют постоянного магнитного момента и приобретают его лишь под влиянием внешнего поля. Те же Газы, у которых молекулы обладают постоянным магнитным моментом, во внешнем магнитном поле ведут себя как парамагнетики.

  • Кинетические свойства Газов

    Кинетические свойства Газов — теплопроводность, диффузию, вязкость — молекулярно-кинетическая теория рассматривает с единой точки зрения: диффузию как перенос молекулами массы, теплопроводность как перенос ими энергии, вязкость как перенос количества движения. Модель идеального Газы для анализа явлений переноса непригодна, ибо в этих процессах существенную роль играют столкновения молекул (при которых происходит передача какой-нибудь из переносимых величин, например энергии) и «размер» молекул (влияющий на частоту столкновений).

  • Изменение объема газа при изменении температуры

    Как ведет себя газ, если меняются его температура и объем, а давление остается постоянным?

    Рассмотрим такой опыт. Коснемся ладонью сосуда, в котором горизонтальный столбик ртути запирает некоторую массу воздуха. Газ в сосуде нагреется, его давление повысится, и ртутный столбик начнет перемещаться вправо. Движение столбика прекратится, когда благодаря увеличению объема воздуха в сосуде давление его сделается равным наружному. Таким образом, в конечном результате этого опыта объем воздуха при нагревании увеличился, а давление осталось неизменным.

  • Законы идеального газа

    Экспериментальный:

    Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

    Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению...

  • Закон Шарля с точки зрения молекулярной теории

    Что происходит в микромире молекул, когда температура газа меняется, например когда температура газа повышается и давление его увеличивается? С точки зрения молекулярной теории возможны две причины увеличения давления, данного газа: во-первых, могло увеличиться число ударов молекул на 1 см2 в течение 1 сек; во-вторых, могло увеличиться количество движения, передаваемое при ударе в стенку одной молекулой.

  • Закон Дальтона

    В природе и в технике мы очень часто имеем дело со смесью нескольких газов. Самый важный пример этого — воздух, являющийся смесью азота, кислорода, аргона, углекислого газа и других газов. От чего зависит давление смеси газов?

    Поместим в колбу кусок вещества, химически связывающего кислород из воздуха (например, фосфор), и быстро закроем колбу пробкой с трубкой. присоединенной к ртутному манометру. Через некоторое время весь кислород воздуха соединится с фосфором. Мы увидим, что манометр покажет меньшее давление, чем до удаления кислорода. Значит, присутствие кислорода в воздухе увеличивает его давление. 

  • Закон Гей-Люссака

    Количественное исследование зависимости объема газа от температуры при неизменном давлении было произведено французским физиком и химиком Гей-Люссаком (1778—1850) в 1802 г.

    Опыты показали, что увеличение объема газа пропорционально приращению температуры. Поэтому тепловое расширение газа можно, так же, как и для других тел, охарактеризовать при помощи коэффициента объемного расширения.

  • Закон Бойля - Мариотта

    Перейдем теперь к более подробному изучению вопроса, как меняется давление некоторой массы газа, если температура его остается неизменной и меняется только объем газа. Мы уже выяснили, что такой изотермический процесс осуществляется при условии постоянства температуры тел, окружающих газ, и настолько медленного изменения объема газа, что температура газа в любой момент процесса не отличается от температуры окружающих тел.

  • Закон Авогадро

    Сравнивая числа предпоследнего столбца таблицы с молекулярными весами рассматриваемых газов, легко заметить, что плотности газов при одинаковых условиях пропорциональны их молекулярным весам. Из этого факта следует весьма существенный вывод. Так как молекулярные веса относятся как массы молекул, то...

  • Зависимость плотности газа от температуры

    Что происходит с плотностью некоторой массы газа, если температура повышается, а давление остается неизменным?

    Вспомним, что плотность равна массе тела, деленной на объем. Так как масса газа постоянна, то при нагревании плотность газа уменьшается вот столько раз, во сколько увеличился объем.

    Комментарии: 1
  • Зависимость между плотностью газа и его давлением

    Вспомним, что плотностью вещества называется масса, заключенная в единице объема. Если мы как-нибудь изменим объем данной массы газа, то изменится и плотность газа. Если, например, мы уменьшим объем газа в пять раз, то плотность газа увеличится в пять раз. При этом увеличится и давление газа; если температура не изменилась, то, как показывает закон Бойля — Мариотта, давление увеличится тоже в пять раз. Из этого примера видно, что при изотермическом процессе давление газа изменяется прямо пропорционально его плотности.

  • Зависимость давления газа от температуры

    Начнем с выяснения зависимости давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в 1787 г. Шарлем. Можно воспроизвести эти опыты в Упрощенном виде, нагревая газ в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки.

  • Давление газа

    Газ всегда заполняет объём, ограниченный непроницаемыми для него стенками. Так, например, газовый баллон или камера автомобильной шины практически равномерно заполнены газом.
    Стремясь расшириться, газ оказывает давление на стенки баллона, камеры шины или любого другого тела, твёрдого или жидкого, с которым он соприкасается. Если не принимать во внимание действия поля тяготения Земли, которое при обычных размерах сосудов лишь ничтожно меняет давление, то при равновесии давления газа в сосуде представляется нам совершенно равномерным. Это замечание относится к макромиру.

  • Грамм-молекула. Число Авогадро

    Число, дающее отношение масс двух молекул, указывает в то же время и отношение масс двух порций вещества, содержащих одинаковые числа молекул. Поэтому 2 г водорода (молекулярный вес На равен 2), 32 г кислорода (молекулярный вес Од равен 32) и 55,8 г железа (его молекулярный вес совпадает с атомным, равным 55,8) и т. д. содержат одно и то же число молекул.

    Количество вещества, содержащее число граммов, равное его молекулярному весу, называется грамм-молекулой или молем.

  • Газы

    Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом), агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объём. Вещество в газообразном состоянии широко распространено в природе. Газы образуют атмосферу Земли, в значительных количествах содержатся в твёрдых земных породах, растворены в воде океанов, морей и рек. Солнце, звёзды, облака межзвёздного вещества состоят из Газы — нейтральных или ионизованных (плазмы).