Пачиуоло (Лука) - итальянский математик (1445-1514), магистр богословия, всю жизнь преподававший математику в различных городах Италии: Перуджии, Риме, Неаполе, Флоренции, Болонье, Венеции. В 1494 г. издал книгу под заглавием "Summa de Arithmetica Geometria Proportioni et Proportionalita" (2 изд., 1523), в которой указывал на неразрешенность вопроса о решении кубических уравнений. Из этого сочинения видно, что в середине XV в. усвоение арабской математики Италией после почти трехвековых усилий было наконец достигнуто. Книга состояла из письма к князю Гвидобальдо, герцогу Урбинскому, и из двух частей, из которых первая посвящена арифметике и алгебре, вторая - геометрии.
Сиддхи (др.-инд. siddha, «совершенный»), в индуистской мифологии полубожественные существа, обитающие в воздушном пространстве — Антарикше и отличающиеся чистотой и святостью.
Согласно пуранам, число сиддхов доходит до 88 000 и они владеют восемью сверхъестественными свойствами: становиться бесконечно малыми или большими, предельно лёгкими или тяжёлыми, мгновенно перемещаться в любую точку пространства, достигать желаемого силой мысли, подчинять своей воле предметы и время и добиваться верховной власти над миром.
Если восьмерку перевернуть - получится знак бесконечности.
Без цифр невозможно понять историю. Трудно представить, как описать словами время. То, что и так представляется, благодаря образам, с большим трудом. Что нельзя рассматривать как нечто целое, не объединив его, создав количественные характеристики. А это не что иное, как числа. Куда не направь свой взор - всюду цифры, цифры...
Методы решения иррациональных уравнений, как правило основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному, ли-бо является его следствием. Поэтому существуют два пути при решении иррациональных уравнений:
1) переход к выводным уравнениям (следствиям) с последующей проверкой корней;
Вероятность существования Бога равна 62 %. К такому выводу на основе математических вычислений пришли немецкие ученые.
В исследовании была применена формула священника и математика Томаса Байеса двухсотлетней давности. Были проведены исследования и сделаны расчеты в нескольких направлениях. Среди них – возникновение и устройство космоса, эволюция, добро и зло, религиозные сведения – на многие трудные вопросы должен был быть найден математический ответ.
“Источником алгебраических иррацио-нальностей является двузначность или мно-гозначность задачи; ибо было бы невозмож-но выразить одним и тем же вычислением многие значения, удовлетворяющие одной и той же задаче, иначе, чем при помощи кор-ней…; они же разве только в частных случа-ях могут быть сведены к рациональностям”. (Лейбниц Г.)
Элементы математического анализа занимает значительное место в школьном курсе математики. Учащиеся овладевают математическим аппаратом, который может быть эффективно использован при решении многих задач математики, физики, техники. Язык производной и интеграла позволяет строго формулировать многие законы природы. В курсе математики с помощью дифференциального и интегрального исчислений исследуются свойства функций, строятся их графики, решаются задачи на наибольшее и наименьшее значения, вычисляются площади и объемы геометрических фигур.
Не всякое уравнение вида f(x)=g(x) в результате преобразований может быть приведено к уравнению того или иного стандартного вида, для которого подходят обычные методы решения. В таких случаях имеет смысл использовать такие свойства функций f(x) и g(x) как монотонность, ограниченность, четность, периодичность и др. Так, если одна из функций возрастает, а другая убывает на определенном промежутке, то уравнение f(x) = g(x) не может иметь более одного корня, который, в принципе, можно найти подбором. Далее, если функция f(x) ограничена сверху, а функция g(x) – снизу так, что f(x)мах=А g(x)мin=A, то уравнение f(x)=g(x) равносильно системе уравнений.
На практике для построения графика некоторых функций составляют таблицу значений функции для некоторых значений аргумента, затем наносят соответствующие точки на координатную плоскость и последовательно соединяют их линией. При этом предполагается, что точки достаточно точно показывают ход изменения функции.
Введение комплексных чисел было связано с открытием решения кубического уравнения, т. е. ещё в 16 веке.
И до этого открытия при решении квадратного уравнения x2 + + = px приходилось сталкиваться со случаем, когда требовалось извлечь квадратный корень из (p/2) 2 - q, где величина (p/2) 2 была меньше, чем q. Но в таком случае заключали, что уравнение не имеет решений. О введении новых (комплексных) чисел в это время (когда даже отрицательные числа считались «ложными») не могло быть и мысли. Но при решении кубического уравнения по правилу Тартальи оказалось, что без действий над мнимыми числами нельзя получить действительный корень.
В китайской науке было получено много замечательных результатов. В области математики - десятичные дроби и пустая позиция для обозначения нуля; то, что в Европе с XVII в. называли «треугольник Паскаля», в Китае к началу XIV в. считался старинным способом решения уравнений; то, что известно как подвес Кардана (XIV в.), в действительности должно быть названо подвесом Дин Хуаня (II в.). В Китае при династии Тан (VII-Х вв.) были изобретены механические часы. Развитие шелкоткачества обусловило такие фундаментальные изобретения, как приводной ремень и цепная передача.
Искусство предполагает общение между художником и зрителями. В идеальном случае — это замкнутый цикл: художник представляет зрителям свою работу, вызывает их реакцию и использует ее как обратную связь, учитывая, с целью быть лучше понятым, отклик зрителей в своей дальнейшей работе.
Есть ли препятствия распространению компьютерной графики и компьютерного искусства? Пока это были лишь рисунки, созданные графопостроителем, главной проблемой были сомнения специалистов, историков искусства, искусствоведов и, более всего, владельцев галерей.
Компьютер — это устройство для обработки данных, а термин «данные» (информация), казалось бы, означает числа, а не рисунки. Однако рисунки — это в сущности другой способ описать реальные события — факты.
Кроме того, рисунки можно закодировать числами, а затем обработать с помощью компьютера. Графические изображения, созданные компьютером, будем далее называть для краткости компьютерной графикой. Значение этого (когда-то побочного) способа использования компьютеров чрезвычайно возросло в последнее время.
Рассмотрим пример. Рост некоторой популяции за несколько лет обычно описывают при помощи коэффициента прироста, т. е. отношения ежегодного прироста численности популяции к ее общей численности. Если эта величина остается постоянной в течение всего периода времени, то говорят, что закон роста является линейным, а сам рост называют экспоненциальным. Например, при коэффициенте прироста в 5 % популяция удваивает свою численность каждые 14 лет. Законы такого типа, однако, применимы только на ограниченных промежутках времени. Для роста всегда существуют пределы.
Рассматриваемые здесь процессы возникают в различных физических и математических задачах. Все они имеют одно обшее — это конкуренцию нескольких центров за доминирование на плоскости. Простые границы между территориями в результате такого соперничества возникают редко. Чаше имеет место нескончаемое филигранное переплетение и непрекращающаяся борьба даже за самые малые участки.
Хотелось бы привести слова Фриденсрайха Хундертвассера, одного из тех замечательных людей силами которых современная наука становится все ближе к искусству, а искусство получает возможность использовать весь арсенал средств, предоставляемых сегодняшней наукой для выражения идей и художественных замыслов:
В 1953 году я понял, что прямая линия ведет человечество к упадку. Тирания прямой стала абсолютной. Прямая линия — это нечто трусливое, прочерченное по линейке, без эмоций и размышлений; это линия, не существующая в природе. И на этом насквозь прогнившем фундаменте построена наша обреченная цивилизация. Если даже и возникает где-то мысль, что прямая линия напрямик ведет к гибели, ее курсу все равно продолжают следовать дальше… Любой дизайн, основанный на прямой линии, будет мертворожденным.
К. Маркс назвал Аристотеля (384-322 гг. до н. э.) «величайшим философом древности». Основные вопросы философии, логики, психологии, естествознания, техники, политики, этики и эстетики, поставленные в науке Древней Греции, получили у Аристотеля полное и всестороннее освещение. В математике он, по-видимому, не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков.
Сочинения Платона (427-347 гг. до н. э.) — уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сомнениями и неуверенностью, подчас с безрезультатными попытками разрешения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т. п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.
Аргументы Зенона вскрыли внутренние противоречия, которые имели место в сложившихся математических теориях. Тем самым факт существования математики был поставлен под сомнение. Какими же путями разрешались противоречия, выявленные Зеноном?
Простейшим выходом из создавшегося положения бал отказ от абстракций в пользу того, что можно непосредственно проверить с помощью ощущений. Такую позицию занял софист Протагор. Он считал, что «мы не можем представить себе ничего прямого или круглого в том смысле, как представляет эти термины геометрия; в самом деле, круг касается прямой не в одной точке».
Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI — V в. до н. э.) и Зенона (первая половина V в. до н. э.).
Философия Парменида заключается в следующем: всевозможные системы миропонимания базируются на одной из трех посылок: 1) Есть только бытие, небытия нет; 2) Существует не только бытие, но и небытие; 3) Бытие и небытие тождественны. Истинной Парменид признает только первую посылку. Согласно ему, бытие едино, неделимо, неизменяемо, вневременно, закончено в себе, только оно истинно сущее; множественность, изменчивость, прерывность, текучесть — все это удел мнимого.